```
RAMP DESIGN by Will Massie, SOMAR
April 29, 2010
```

(DISCLAIMER: This worksheet is shared only as an example and should be used with caution.) (The calculations are not guaranteed to be error free.)

Define the section modulus for ramp section
(section modulus calculated using AutoCAD, see graphic below)

Area:
226.6616 sq in

Perimeter:
833.0722 in

	$X:$	-99.9506	\cdots	99.9504	in
	$Y:$	-6.8177	\cdots	11.1823	in

Gentroid: $X:-0.0003$ in $Y: 0.0000$ in
Homents of inertia: $X: 4216.4402 \mathrm{sq}$ in sq in
$Y: 800704.1645 \mathrm{sq}$ in sq in
Product of inertia: XY: -0.1510 sq in sq in
Radii of gyration: $X: 4.3130$ in
Y: 59.4357 in
Principal moments ($s q$ in $s q i n$) and $X-Y$ directions about centroid:
I: 4216.4402 along [1.0000 0.00001
$\mathrm{J}: 800704.1645$ along [0.0000 1.0000]
Elastic section moduli:
Section modulus (Top) $x: 377.0638$

Section modulus (Bottom) X: 618.4549
Section modulus (Right) Y: 8011.0151
Section modulus (Left) Y : 8010.9991
Smod $=$ section modulus (in^3)
Smod:=377.0638 in ${ }^{3}$

Calculate the maximum allowable stress in tension and compression

```
ou \(=\) ultimate tensile strength (ksi)
\(\sigma y=y i e l d\) stress (ksi)
FS = safety factor
oall = maximum allowable stress in tension or compression (ksi)
```

ksi:= 1000 psi

$$
\begin{array}{lll}
\sigma u:=58 k s i & \sigma y:=36 k s i & \text { FS:=3.0 } \\
\sigma a l l:=\frac{\sigma y}{\text { FS }} & \sigma a l l=12 k s i &
\end{array}
$$

Calculate the maximum allowable moment

Mall = maximum allowable moment (ft*lb)

Mall:= Smod•oall
Mall=3.7706.10 ${ }^{5} \mathrm{ft}$ lbf

FBD, V, and M diagrams
CASE $1=$ front axle of large forklift on ramp
CASE $2=$ both axles of smaller fully-loaded forklift on ramp

CASE 1

FBD

Ra
CASE 2

Ab

FBD

CASE 1: front axle of unloaded large forklift on ramp

Calculate Bending Moment:

```
len = length of the ramp (ft)
lenC = distance from A to C, the point of application of Load C (ft)
Lc = load at C (kips)
Rb = reaction at B (kips)
Ra = reaction at A (kips)
posVmax = maximum positive shear (+kips)
negVmax = maximum negative shear (-kips)
Mmax = maximum bending moment (ft*lb)
```

len:= $21 \mathrm{ft} \quad$ lenC: $=10.5 \mathrm{ft}$

LC:= 67.739kip Note: actual front axle load for unloaded Hyster H1050HDS

Calculate the reactions at A and B :

$$
\begin{array}{ll}
\mathrm{Rb}:=\frac{\mathrm{Lc} \cdot \operatorname{lenC}}{\mathrm{len}} & \mathrm{Rb}=33.8695 \mathrm{kip} \\
\mathrm{Ra}:=\mathrm{Lc}-\mathrm{Rb} & \mathrm{Ra}=33.8695 \mathrm{kip}
\end{array}
$$

Calculate the maximum shear forces:

posVmax: $=\mathrm{Ra}$	posVmax $=33.8695 \mathrm{kip}$
negVmax: $=\mathrm{Rb}$	negVmax $=33.8695 \mathrm{kip}$

Calculate the maximum bending moment:

Mmax: $=$ posVmax $\cdot(\operatorname{lenC})$
$\operatorname{Mmax}=3.5563 \cdot 10^{5} \mathrm{ft} 1 \mathrm{bf}$

Compare maximum bending moment to allowable bending moment:
if Mall>Mmax
result:= "Pass"
else
result:= "Fail"
result="Pass"

Calculate Max Deflection:
$\mathrm{E}=$ modulus of elasticity (ksi)
$I=m o m e n t$ of inertia about horizontal centroidal axis (in^4) ymax $=$ maximum deflection (in)

Define modulus of elasticity and moment of inertia values:

$$
\mathrm{E}:=29000 k s i \quad I:=4216.4402 i^{4}
$$

Calculate the maximum deflection:

$$
\begin{aligned}
& \text { if } \operatorname{lenC} \leq \frac{\operatorname{len}}{2} \\
& y m a x:=\frac{-L C \cdot \operatorname{lenC}}{3 \cdot E \cdot I \cdot \operatorname{len}} \cdot\left(\frac{\operatorname{len}^{2}-\operatorname{lenC}^{2}}{3}\right)^{\frac{3}{2}} \\
& \text { else } \\
& \quad \begin{array}{l}
\text { lenC:}:=\operatorname{len}-\operatorname{lenC} \\
y m a x:=\frac{-L C \cdot \operatorname{lenC}}{3 \cdot E \cdot I \cdot \operatorname{len}} \cdot\left(\frac{\operatorname{len}^{2}-\operatorname{lenC}}{3}\right)^{\frac{3}{2}}
\end{array}
\end{aligned}
$$

$y m a x=-0.1847$ in

Calculate Bending Moment:

```
Lc = load at C , which is the larger of the two loads (kips)
Ld = load at D (kips)
wheelbase = the distance between the wheels on the forklift (in)
len = length of the ramp (ft)
lenC = distance from A to C, the point of application of Load C (ft)
lenD = distance from A to D, the point of application of Load D (ft)
Rb = reaction at B (kips)
Ra = reaction at A (kips)
posVmax = maximum positive shear (+kips)
negVmax = maximum negative shear (-kips)
Mmax = maximum bending moment (ft*lb))
```

Lc:=64.282kip Ld:=4.475kip
wheelbase:=129.9in
Note: data shown corresponds to a loaded Hyster H300HD
len:=20 ft lenC:=9 ft lenD:= lenC+wheelbase lenD=19.825ft

Calculate the reactions at A and B :

$$
\begin{array}{ll}
\mathrm{Rb}:=\frac{\mathrm{Lc} \cdot \mathrm{lenC}+\mathrm{Ld} \cdot \mathrm{lenD}}{\mathrm{len}} & \mathrm{R} \mathrm{~b}=33.3627 \mathrm{kip} \\
\mathrm{Ra}:=\mathrm{Lc}+\mathrm{Ld}-\mathrm{Rb} & \mathrm{Ra}=35.3943 \mathrm{kip}
\end{array}
$$

Calculate the maximum shear forces:

```
posVmax:= Ra posVmax=35.3943 kip
negVmax:= Rb negVmax=33.3627 kip
```

Calculate the maximum bending moment:

Mmax:= posVmax•lenC
$\operatorname{Mmax}=3.1855 \cdot 10^{5} \mathrm{ft}$ lbf

Recalculate allowable bending moment using yield strength

```
Mall:= Smod·\sigmaall
Mall=3.7706.10 5t lbf
```

Compare maximum bending moment to allawable bending moment:
if Mall>Mmax
result:= "Pass"
else
result:= "Fail"
result="Pass"

Calculate Max Deflection:

```
E = modulus of elasticity (ksi)
I = moment of inertia about horizontal centroidal axis (in^4)
ymaxC = maximum deflection at \(C\) from load C only (in)
```



```
\(\theta a=a n g l e ~ o f ~ d e f l e c t i o n a t ~ A ~ f r o m ~ l o a d ~ D ~ o n l y ~(r a d i a n s) ~\)
\(y D=\) deflection at \(x C\) from load D only (in)
ymax = maximum deflection (in)
```

Define modulus of elasticity and moment of inertia:

$$
E:=29000 k s i \quad I:=4216.4402 \mathrm{in}^{4}
$$

Calculate the maximum deflection at C from load C only:

$$
y \operatorname{maxC}:=\frac{- \text { Lc } \cdot \operatorname{lenC}}{3 \cdot E \cdot I \cdot \operatorname{len}} \cdot\left(\frac{\operatorname{len}^{2}-\text { lenC }^{2}}{3}\right)^{\frac{3}{2}} \quad \operatorname{ymax} C=-0.1494 \mathrm{in}
$$

Calculate the position of the point of maximum deflection:

$$
x C:=\operatorname{len}-\left(\frac{\operatorname{len^{2}-lenC^{2}}}{3}\right)^{\frac{1}{2}} \quad x C=9.6882 f t
$$

Calculate the angle of deflection at A from load D only:

$$
\theta a:=\left(\frac{(-\mathrm{Ld}) \cdot \operatorname{lenD}}{6 \cdot E \cdot I \cdot l e n}\right) \cdot(2 \cdot \operatorname{len}-\operatorname{lenD}) \cdot(\operatorname{len}-\operatorname{lenD}) \quad \theta a=-3.0739 \cdot 10^{-6}
$$

Calculate the reaction at A if only load D existed:

$$
\mathrm{Ra}:=\frac{\mathrm{Ld} \cdot(\mathrm{len}-l e n \mathrm{D})}{\text { len }} \quad \mathrm{Ra}=0.0392 \text { kip }
$$

Calculate the deflection at $x C$ if only load D existed:
if $x C>l e n D$

$$
y D:=\theta a \cdot x C+\frac{R a \cdot x C^{3}}{6 \cdot E \cdot I}-\frac{L d}{6 \cdot E \cdot I} \cdot(x C-l e n D)^{3}
$$

else

$$
y \mathrm{D}:=\theta \mathrm{a} \cdot \mathrm{xC}+\frac{\mathrm{Ra} \cdot \mathrm{xC}}{}{ }^{3}
$$

$$
\mathrm{yD}=-2.7351 \cdot 10^{-4} \mathrm{in}
$$

Due to the principle of superposition deflections "ymaxC" and "yD" may be added to obtain the total maximum deflection at $x C:$

```
ymax:= yD+ ymaxC
```

$y \max =-0.1497 \mathrm{in}$

References:
Mechanics of Materials, 2nd ed. by Beer and Johnson, pg. 446-48
Formulas for Stress and Strain, 5th ed. by Roark and Young, pg. 96-97

